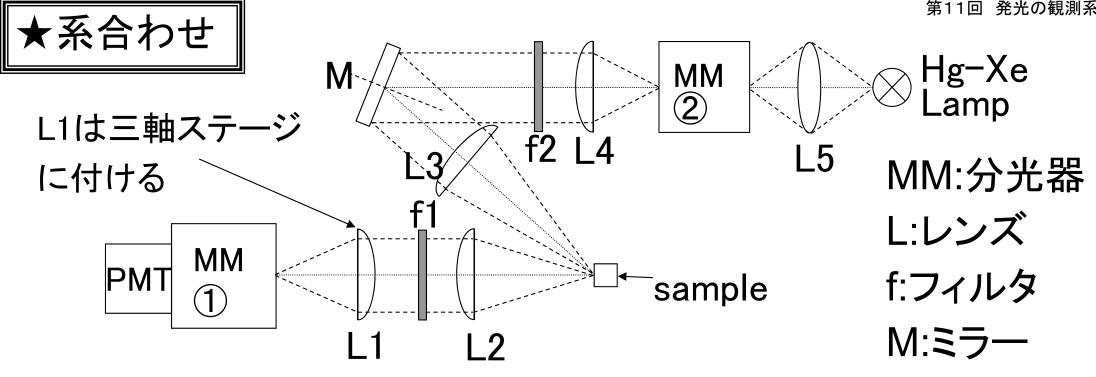
★道具の選定


●励起光源

必須: 励起対象 E_g ___光源エネルギー E_{ex} $E_g << E_{ex} \rightarrow$ 伝導帯底までの緩和過程で損失大 ______ $E_g \cong_{Eex} \rightarrow PL$ が_______

●分光器:大きい方が高分解能→高価. 高分解能過ぎると

モノクロメータ ______ ポリクロメータ

- ●ミラー: できるだけ_____
- ●レンズ: 短焦点すぎると_____
- ●光学フィルター: 測定物を考えて選ぶ

- ①光学系の高さをそろえる→
- ②サンプル位置の設定→MM①出口スリットから入れた光が

③励起光源の設定→

~③大体の系合わせ.


*	术	リケ	' 口 -	+CCI	
, ,	•				

CCD外	トせない→	

大体_____

 \longrightarrow

ポリクロ+リニアイメージセンサーは 光の入射角でスペクトル変化→

_____校正

★感度補正

検出器、分光器、レンズにも波長依存有り

既知のスペクトル観測

感度補正率=___:各波長毎に

+	ブ	ラン	ク	一	- ス	

●PL観測で最も重要なこと

励起光の裾、励起光源からの光、測定器パイロットランプ、			
光学フィルタの発光、試料固定両面テープ			
●確認法			
☆ブランクテスト: サンプル位置に			
→それでPL出てきたら			
☆温度依存:通常半導体は			
→温度異存なければ			
☆励起強度依存:依存なければ <u></u>			